KRISHI VIGYAN KENDRA AGWANPUR, SAHARSA

ACTION PLAN

(January to December, 2022)

BIHAR AGRICULTURAL UNIVERSITY SABOUR, BHAGALPUR, (BIHAR)

CONTENTS

Sl. No	Particulars	Page
1.	Introduction	3
2.	Mandate& Activities	3
3.	Thrust Area	4
4.	Location & Agro-climatic Condition	4
5.	District Map	5
6.	Linkage	6
7.	Staff Position	7
8.	Training of Programme	8-29
9.	Abstract of Training programme	20-26
10.	Front Line Demonstration	27-31
11.	Seed and Planting material Production	32
12.	Extension activities	33-34
13.	Revolving Fund	35
14.	On farm Trial	36-48
15.	Soil & water testing	49
16.	Technology having wide acceptability	50-53

Krishi Vigyan Kendra, Saharsa

INTRODUCTION

Krishi Vigyan Kendra, Saharsa is an innovative centre of Indian Council of Agricultural Research (ICAR), Pusa, New Delhi sanctioned vides ICAR Sanction Order F.No. 21/100/84 dated 14th March 1984 under the administrative control of Bihar Agricultural University, Sabour, Bhagalpur Bihar. This KVK was established in 1985 at Agwanpur farm under Sattarkataiya Block of district Saharsa. It is an unique scheme of ICAR oriented to serve the farming community being the fountain head of agricultural technologies at the district level. KVKs are the Agricultural Knowledge and Resource Centre for farmers, farmwomen, rural youth and extension functionaries. The KVK has the mandated activities of conducting on farm testing/trials (OFTs) with emerging advances in agricultural research for assessing and demonstration of recently released technology to develop location specific sustainable land use production system and dedicated to organize vocational training in agriculture and allied fields for practicing farmers, farm women and rural youth. The Saharsa district is quite suitable for cultivation of rice, wheat, maize oilseeds, pulses and vegetables crops in different seasons of the year. The soil is also favorable for growing makhana, mango, guava, banana and bamboos with 180 to 210 days length of growing period. The productivity enhancement of the field and horticultural crops and livestock with the concept of integrated farming system module is the major arena of thrust for development of agriculture in the district. KVK Saharsa is working with following specific mandates and activities as per guidelines of ICAR :

MANDATE Technology Assessment and Demonstration for its Application and Capacity Development ACTIVITIES

- a) On-farm testing to assess the location specificity of agricultural technologies under various farming systems.
- b) Frontline demonstrations to establish production potential of various crops and enterprises on the farmers' fields.
- c) Capacity development of farmers and extension personnel to update their knowledge and skills on modern agricultural technologies.
- d) To work as Knowledge and Resource Centre of agricultural technology for supporting the initiative of public, private and voluntary sectors in improving the agricultural economy of the district.
- e) Providing farm advisory using ICT and other media means on various subjects of interest to farmers.
- f) Data documentation, characterization and strategic planning of farming practices.
- g) Production of quality seeds, planting materials, livestock breeds, animal product bio-product etc as per the demand and supply the same to different clienteles.

THRUST AREA

- INM and IPM practices in crops and cropping system for sustainable agriculture.
- Productivity enhancement of field crops, vegetables and fruit plants
- Popularization of quality seed production.
- Income generation through mushroom production, vermi-composting and beekeeping activities
- Farm mechanization in Agriculture
- Farm women empowerment

TOTAL LAND WITH KVK

S. No.	Item	Area (ha)
1	Under Buildings	1.50
2.	Under Demonstration Units	0.50
3.	Under Crops	13.00
4.	Orchard/Agro-forestry	2.00
5.	Others with details water logged, road nala etc	3.00
	Total	20.00

MAP OF SAHARSA DISTRICT

LOCATION

Krishi Vigyan Kendra, Saharsa is situated at Agwanpur farm under Sattarkataiya Block of district Saharsa. The District came into existence on 1st April 1954 carved out from Bhagalpur and then another two districts Madhepura and Supaul also emerged from Saharsa. KVK is 250 km away from state capital Patna (Bihar) and 10 km far away from Saharsa railway station and district head quarter. Saharsa district occupies an area of 1,687 square kilometres. Saharsa district comprises of ten blocks and two sub-divisions: SaharasaSadar and SimriBakhtiyarpur having gram punchait 151 and villages 468.

AGRO-CLIMATIC CONDITION

KVK Saharsa falls in Agro-climatic Zone-II North East alluvial plain zone situated in middle gangetic plain. Saharsa district is located between 25^o 37' and 26^o 32' North latitudes, and 86^o 0' and 86^o 09' East longitudes with an altitude of 52.7 meter from MSL The climate is sub-tropical and sub-humid (moist) eco-region with hot-wet summer and cool-dry winter having mean maximum and minimum temperature between 33.8°C and 8.8°C respectively. The average annual rainfall of the district is about 1305 mm and mean annual potential evapo-transpiration (PET) demand of 1300 mm (Agro-Ecological Zone:O8 Cd/Cm6). The maximum rainfall occurs during monsoon period. The soil of the districts generally light textured having alluvial properties.

The soil is recognized with p^H 6.5 to 8, low in organic carbon, available N, P₂O₅ and medium in available K₂O. Soil is deficient in Zinc, Sulphur & Boron. The cropping system varies depending on rainfall, land situation and water accumulation in the locality. Saharsa district is surrounded on the west by the river <u>Kosi</u>, which boasts an abundance of fish and makhana. Saharsa is famous for its varieties of mangoes and litchis. There are four distinct farming situations viz. Upland, Medium land, low land and deep low land having specific characteristic which determine crop and cropping sequence/cropping patterns in the district.

Sl No.	Сгор	Area (ha)	Production (MT)	Productivity (Kg/ha)
1.	Rice	79523	124878	1570
2.	Wheat	49020	97771	1995
3.	Rabi maize	27062	148874	5501
4.	Mustard	1359	1843	1356
5.	Linseed	202	170	843
6.	Sesame	3	3	1000
7.	Sunflower	128	183	1430
8.	Lentil	469	435	925
9.	Pea	196	201	1027
10.	Summer green gram	16296	10453	615

Area production and yield of major crops in Saharsa district

Source: Directorate of statistics and economics, Bihar 2019-20

LINKAGES

Staff Positions:

Sl. No.	Name of Post	Sanction	Present Position	Date of Joining
		Strength		
1		1		24.04.2012
1.	Senior Scientist & Head	1	Dr. K.M. Singh	24.04.2012
2.	SMS (Agrill. Engg.)	1	Er. Vimlesh Kumar Pandey	10.07.2007
3.	SMS (H.Sc)	1	Dr. Suneeta Paswan	22.06.2009
4.	SMS (Plant Pathology)	1	Md. NadeemAkhtar	17.10.2014
5.	SMS (Agronomy)	1	Mr. AnandChoudhary	21.10.2014
6.	SMS (Horti)	1	Dr. Pankaj Kumar Ray	05.012015
7.	SMS (Soil Science/ Ag.	1	Vacant	
	Ext.)			
8.	Prog. Asstt (lab.Tech.)	1	Mr. Ravi Ranjan Kumar	17.11.2012
9.	Farm Manager	1	Vacant	
10.	Assistant	1	Mr. Mahendra Narayan	08 04 2012
	Assistant	1	Singh	08.04.2015
11.	Prog. Asstt. (Computer)	1	Mr. Ashwani Kumar	21.05.2013
12.			Mr. Mithilesh Kumar	
	Jr. Stenographer	1	Mandal	15.06.2013
13.	Driver	1	Mr. Rajeev Kumar Bhagat	21.05.2015
14.	Driver	1	Mr. Dilip Kumar Dinkar	28.05.2015
15.	Supporting Staff	1	Vacant	
16.	Supporting Staff	1	Mr. Lalo Thakur	22.09.1990

REVISED PROFORMA FOR ACTION PLAN 2022

1. Name of the KVK: SAHARSA

Address	Telephone	E mail
Krishi Vigyan Kendra, Agwanpur, Saharsa,	9430613389	saharsakvk@gmail.com
Pin-852201		

2.Name of host organization :

Address	Telephone		E mail
	Office	FAX	
Bihar Agriculture University, Sabour,	0641-2452606		deebausabour2019@gmail.com
Bhagalpur			

3.Training programme to be organized (Jan. to Dec. 2022)

(a) Farmers and farm women

Thematic	Title of	No.	Dur	Venue	Tentative	No. of Participants								
area	Training		atio n	On/	Date	SC		ST	ST (Other		Total	
				Off		Μ	F	Μ	F	M	F	M	F	Т
CROP PROD	UCTION													
Integrated crop management	Scheduling of irrigation in wheat	01	2	Off/On	06-07 Jan. 2022	10	05			15		25	05	30
Integrated crop management	Agronomic management practices of summer Green Gram	01	2	Off/On	14-15 Feb. 2022	10	05			15		25	05	30
Integrated crop management	Agronomic management practices of summer Green Gram	01	2	Off/On	02-03 March 2022	10	05			15		25	05	30
Resource Conservation Technique	Principles and technique for conservation of resources	01	2	Off/On	07-08 April 2022	10	05			15		25	05	30
Fodder Production	Quality fodder production for Koshi region	01	04	Off/On	12-13 April 2022	10	05			15		25	05	30

Seed production	Precautions taken during harvesting & threshing of wheat seed.	01	2	Off/On	26-27 April 2022	10	05	-	15	25	05	30
Weed management	Weed management in paddy	01	2	On/ Off	04-05 May 2022	10	05		15	25	05	30
Water Management	Water management in paddy	01	2	On/ Off	01-02 June 2022	10	05		15	25	05	30
Soil fertility management	Nutrient Management in paddy	01	2	On/ Off	01-02 July 2022	10	05		15	25	05	30
Integrated Crop Management	Integrated Crop Management in paddy	01	03	On/ Off	04-05 Aug. 2022	10	05		15	25	05	30
Integrated Crop Management	Integrated Nutrient Management in Kharif crops	01	02	On/ Off	01-02 Sept. 2022	10	05		15	25	05	30
Seed Production	Quality seed production of Oilseed	01	02	On/ Off	07-08 Oct. 2022	10	05	-	15	25	05	30
Plant Protecti	on									0	0	0
Integrated Pest Management	IPM of Oilseed crop	01	2	On/ Off	13-14 Jan. 2022	10	05		15	25	05	30
Integrated Pest Management	IPM in pulses	01	2	On/ Off	17-18 Jan. 2022	10	05		15	25	05	30
Integrated Pest Management	Integrated Pest Management in Mango & Litchi	01	2	On/ Off	03-04 Feb. 2022	10	05		15	25	05	30
Integrated Pest Management	IPM of Oilseed crop	01	2	On/ Off	07-08 Feb. 2022	10	05		15	25	05	30
Income Generation	Cultivation of Garma mushrooms	01	04	On/ Off	14-15 March 2022	10	05		15	25	05	30
Integrated Pest Management	Integrated Pest Management in Garma Green Gram	01	2	On/ Off	16-18 April 2022	10	05		15	25	05	30
Income Generation	Production technology and management of	01	2	On/ Off	17-18 May 2022	10	05		15	25	05	30

	Makhana insect											
	pest and diseases											
Integrated Pest Management	Use of organic inputs for plant disease management	01	2	On/ Off	20-21 June 2022	10	05		15	25	05	30
Biocontrol of pests and diseases	Biocontrol of pests and diseases	01	2	On/ Off	15-16 July 2022	10	05		15	25	05	30
Integrated Disease Management	Management of Paddy diseases	01	2	On/ Off	17-18 Aug. 2022	10	05		15	25	05	30
Integrated Pest Management	IPM in paddy	01	2	On/ Off	08-09 Sept. 2022	10	05		15	25	05	30
Integrated Pest Management	IPM in Cabbage & Cauliflower	01	2	On/ Off	07-08 Dec. 2022	10	05		15	25	05	30
HORTICULT	URE									0	0	0
Plant Propagation techniques	Propagation techniques of fruit plants	01	2	On/ Off	11-12 Jan. 2022	10	05		15	25	05	30
Layout and Management of orchards	Lay out and Management of High Density Orchard	01	2	On/ Off	20-21 Jan. 2022	10	05		15	25	05	30
Nursery raising	Nursery raising & Management of vegetable crops	01	2	On/ Off	10-11 Feb. 2022	10	05		15	25	05	30
Protected Cultivation	Low cost poly house for small farmers regarding off season Vegetable cultivation	01	2	On/ Off	30-31 March 2022	10	05		15	25	05	30
Production & management technology	Scientific cultivation of Cole crops	01	2	On/ Off	19-20 April 2022	10	05		15	25	05	30
Production and Management Technology	Cultivation of Aromatic & Medicinal Plants	01	2	On/ Off	30-31 May 2022	10	05		15	25	05	30
Production and Management technology	Cultivation of tuber crops	01	2	On/ Off	15-16 June 2022	10	05		15	25	05	30
Yield increment	Scientific Cultivation of Turmeric and Ginger	01	2	On/ Off	7-8 July 2022	10	05		15	25	05	30

Production & Management technology	Production technology and management of vegetable crops.	01	2	On/ Off	15-16 Sept. 2022	10	05	15		25	05	30
Production and Management technology	Package & Practices of spices	01	2	On/ Off	10-11 Nov. 2022	10	05	15		25	05	30
Organic cultivation	Organic vegetable production	01	2	On/ Off	17-19 Dec. 2022	10	05	15		25	05	30
Agriculture Engineering										0	0	0
Establishmen t of MIS	Application of Control Pressure Devices for achieving higher Irrigation Water Use Efficiency	01	02	On	14-15 Jan. 2022	5	2	20	3	25	5	30
Repair & Maintenance of farm machinery & implements	Maintenance of centrifugal pump	01	02	Off	27-28 Jan. 2022	5	2	20	3	25	5	30
Repair & Maintenance of farm machinery & implements	Internal Combustion Engine: Parts, operation, repair and maintenance	01	02	Off	03-04 Feb. 2022	5	2	20	3	25	5	30
Use of small tools	Improved implements for summer green gram cultivation	01	02	Off	24-25 March 2022	5	2	20	3	25	5	30
Repair and maintenance of farm implements	Sprayers/ Dusters: Troubles, causes and their remedies	01	02	On	7-8 April 2022	5	2	20	3	25	5	30
Use of plastics in agriculture for water conservation	Use of HDPE pipes for irrigation for achieving higher irrigation efficiency	01	02	Off	4-5 May 2022	5	2	20	3	25	5	30
Resource Conservation Technique	Application of DSR technique for rice cultivation	01	02	On	23-24 June 2022	5	2	20	3	25	5	30
Repair and maintenance of farm implements	Operation and maintenance of sprayer and duster	01	02	Off	28-29 July 2022	5	2	20	3	25	5	30
Installation and maintenance	Fertigation by application of liquid fertilizers	01	02	Off	17-18 Aug. 2022	5	2	20	3	25	5	30

of MIS	through drip irrigation system													
Installation and maintenance of MIS	Installation, operation and maintenance of drip irrigation system with micro irrigation of horticultural crops	01	03	On	21-22 Sept. 2022	5	2			20	3	25	5	30
Use of plastics in agriculture	Cultivation of cash crops in controlled environment: Cultivation in poly houses	01	02	Off	3-4 Nov. 2022	5	2			20	3	25	5	30
Application of liquid fertilizers	Application of liquid fertilizers through drip irrigation system	01	02	Off	14-15 Dec. 2022	5	2			20	3	25	5	30
Home Science												0	0	0
Storage loss minimization techniques	Importance of post harvest technology(Gradin g Processing and marketing)	1	2	Off/On	12-13 Jan. 2022	-	10	-	05	-	10	0	25	25
Women and child care	Importance of family planning among rural women	1	2	Off/On	20-21 Jan. 2022	-	10	-	02	-	13	0	25	25
Value addition	Preservation of seasonal fruits	1	2	Off/On	14-15 Feb. 2022	-	10	-	00	-	15	0	25	25
Source of energy	Use of non- conventional source of energy smokeless chullah , solar cooker, solar light Bio-gas etc	1	2	Off/On	24-25 Feb. 2022	-	10	-	00	-	15	0	25	25
Value addition	Preservation of seasonal vegetables	1	2	Off/On	28-29 March 2022	-	10	-	00	-	15	0	25	25
House hold food security	Scientific preparation and cultivation of nutritional garden	1	2	Off/On	18-19 April 2022	-	10	-	00	-	15	0	25	25

Designing and development for high nutrient efficiency diet	Importance of supplementary feeding in daily diet of rural women and children.	1	2	Off/On	12-13 May 2022	-	10	-	00	-	15	0	25	25
Income Generation	Techniques of Mushroom cultivation and post harvest management	1	2	Off/On	08-09 June 2022	-	10	-	05	-	10	0	25	25
Women and child care	Importance of family planning among rural women	1	2	Off/On	13-14 July 2022	-	10	-	02	-	13	0	25	25
Minimization of nutrient loss in processing	Important techniques of cooking to save fuel and nutrient	1	2	Off/On	17-18 Aug. 2022	-	10	-	00	-	15	0	25	25
Housed food security by nutritional gardening	Layout & management of nutri. Garden	1	2	Off/On	22-23 Sept. 2022	-	10	-	05	-	10	0	25	25
Women and child care	Care of lactating and pregnant women	1	2	Off/On	12-13 Oct. 2022	-	10	-	05	-	10	0	25	25
Location specific drudgery reduction	Location specific drudgery reduction technology for rural women	1	2	Off/On	10-11 Nov. 2022	-	10	-	05	-	10	0	25	25
Women and child care	Importance of balanced feeding in daily diet of rural women	1	2	Off/On	17-19 Dec. 2022	-	10	-	00	-	15	0	25	25
Women and child care	Importance of family planning among rural women	1	2	Off/On	22-23 Dec.2022	-	10	-	02	-	13	0	25	25
Soil Sc.												0	0	0
Soil and water testing	Technique of soil sample collection and its importance	1	2	Off/On	16-17 April 2022	10	-	02	-	13	-	25	0	25

Soil Fertility	Importance of	1	2	Off/On	29-30 June	10	-	02	-	13	-	25	0	25
Management	balance use of				2022									
	fertilizer in													
	vegetables													
Integrated	Integrated Nutrient	1	2	Off/On	21-22 Sept.	10	-	02	-	13	-	25	0	25
Nutrient	Management in				2022									
Management	paddy													
Production &	Method of vermi	1	2	Off/On	09-10 Nov.	10	-	02	-	13	-	25	0	25
Use of	composting and its				2022									
organic	use in crops													
Inputs														

(b) Rural youth

Thematic	Title of Training	No.	Dur	Venue	Tentative	No	. of l	Part	icipa	nts				
area			atio n	On/	Date	SC		ST	Γ	Oth	er	Tota	al	
				Off		Μ	F	Μ	F	Μ	F	Μ	F	Т
Crop Produ	ction													
Seed Production	Seed production of Wheat.	01	03	On	15-18 Jan 2022	5	2			20	3	25	5	30
Seed Production	Seed production of green gram.	01	03	On	17-19 Feb 2022	5	2			20	3	25	5	30
Seed Production	Seed production Important procedures	01	03	On	15-17 March 2022	5	2			20	3	25	5	30
Seed Production	Quality seed production of Paddy	01	03	On	18-20 April 2022	5	2			20	3	25	5	30
Seed Production	Seed Production of Rabi pulses and wheat	01	03	On	28-30 Nov 2022	5	2			20	3	25	5	30
Plant Protect	ion													
Mushroom Production	Production technology of button Mushroom and Management of diseases and insect pests	01	04 days	On	10-13 Jan. 2022	5	2			20	3	25	5	30
IPM	Schedule spray in mango	01	04 days	On	22-25 Jan. 2022	5	2			20	3	25	5	30
Bee Keeping	Bee Keeping	01	03	On	23-25 Feb.	5	2			20	3	25	5	30

			days		2022								
Vermi-culture	Vermicompost Production technique	01	04 days	On	20-23 June 2022	5	2		20	3	25	5	30
Production of organic inputs	Production of Trichoderma Formulation at field level	01	03 days	On	08-11 July 2022	5	2		20	3	25	5	30
Mushroom Production	Production of Button Mushroom	01	04 days	On	12-15 Oct. 2022	5	2		20	3	25	5	30
Repair & Maintenance of farm machinery and implements	Handling & caring of plant protection equipments	01	03 days	On	15-17 Dec. 2022	5	2		20	3	25	5	30
Horticulture													0
Seed production	Seed production technology of vegetable corps	01	4	On	27-31 Jan. 2022	5	2		20	3	25	5	30
High density planting through production	High density planting system for fruit crops	01	3	On	24-26 Feb. 2022	5	2		20	3	25	5	30
Planting Material production	Techniques of Planting Material production of major Horticultural plants	01	3	On	28-30 April 2022	5	2		20	3	25	5	30
Organic cultivation	Organic vegetable production	01	3	On	22-24 June 2022	5	2		20	3	25	5	30
Nursery Management	Nursery raising techniques and Management of horticultural crops	01	3	On	24-26 Aug. 2022	5	2		20	3	25	5	30
Protected cultivation	Production technology for growing off season vegetables and flowers	01	3	On	21-23 Sept. 2022	5	2		20	3	25	5	30
Orchard	Training and pruning of major	01	3	On	09-11 Nov.	5	2		20	3	25	5	30

management	horticultural plants				2022									
Agricultural F	Ingineering	0												0
Repair and maintenance of farm machinery and implements	Operation & maintenance of Micro Irrigation System	01	03	On	27-29 Jan. 2022	5	2			20	3	25	5	30
Repair and maintenance of farm machinery and implements	Repair and maintenance of Internal Combustion engines	01	03	On	4-6 Aug. 2022	5	2			20	3	25	5	30
Repair and maintenance of farm machinery and implements	Operation and Maintenance of sprayers & Dusters	01	03	Off	21-23 Sept. 2022	5	2			20	3	25	5	30
Repair and maintenance of farm machinery and implements	Operation, care and maintenance of micro irrigation devices/sprinkler sets	01	03	On	7-09 Dec. 2022	5	2			20	3	25	5	30
Home Sc.	I	0												0
Value addition	Preservation of seasonal fruits& vegetables	1	3	On	27-29 Jan. 2022	-	10	-	00	-	15	-	25	25
Enterprise development	Cultivation techniques of mushroom	1	03	On	24-26 Feb. 2022	-	10	-	05	-	10	-	25	25
Poultry Management	Techniques of Backyard poultry farming	1	03	On	17-19 March 2022	-	10	-	00	-	15	-	25	25
Nursery Management of Horticulture crops	Cultivation and preparation of nutritional garden value added product	1	03	On	25-27 May 2022	-	10	-	05	-	10	-	25	25

Rural Craft	Technique of	1	5	On	22-27 June	-	10	-	05	-	10	-	25	25
	handicrafts from				2022									
	locally available													
	materials													
Enterprise	Techniques of	1	4	On	01-05 July	-	10	-	05	-	10	-	25	25
development	hand embroideries	-		on	2022						_			_
at the photon	on cloth				2022									
Post harvest	Post harvest	1	3	On	26-30 Aug.	-	10	-	00	-	15	-	25	25
tech.	management of		_	_	2022									
	seasonal				2022									
	vegetables													
	0													
Mushroom	Techniques of	1	3	on	28-30 Sept.	-	10	-	02	-	13	-	25	25
production	mushroom				2022									
	cultivation and													
	preservation													
Post harvest	Food grain storage	1	3	On	21-23 Dec.	-	10	-	02	-	13	-	25	25
tech.	after harvesting.				2022									
Soil Health &	Fertility	0												0
Management	M (1 1 CD)	0.1	-	0	4 6 3 6	- -				20	2	25	_	20
Production	Method of B10-	01	2	On	4-6 May	5	2			20	3	25	5	30
of organic	preparation A zolla				2022									
inputs	& BGA													
Production	Production of	01	2	On	3-5 Dec.	5	2			20	3	25	5	30
of organic	organic inputs	-			2022						_			
inputs														
		34				1								975
	1	1	1	1		1	1	1	1	1		1	1	

Thrust	Title of	No.	Duration	Venue	Tentative	No	. of P	Partio	cipar	nts				
area/ Thematic	Training			On/Off	Date	SC		ST		Otl	ner	Tot	al	
area						М	F	М	F	М	F	М	F	Т
~							_		_		_		_	
Crop Produc	ction													
Productivity enhancement	Improved method of Paddy cultivation	01	02	On	18-19 July 2022	5	2			20	3	25	5	30
Integrated Nutrient management	Natural farming	01	02	On	14-15 Oct. 2022	5	2			20	3	25	5	30
Plant Pathol	ogy:													
Integrated Pest Management	Integrated Pest Management in rice	01	02	On/off	02-03 June 2022	05	02			20	3	25	5	30
Formation & Management of SHGs	Formation of Makhana Farmer Producer Organization	01	02	On/off	29-30 July 2022	05	02			20	3	25	5	30
Integrated Pest Management	Integrated Pest Management in Rabi crops	01	02	On/off	27-28 Sept. 2022	05	02			20	3	25	5	30
Integrated Pest Management	Integrated Pest Management vegetables	01	02	On/off	01-02 Dec. 2022	05	02			20	3	25	5	30
HORTICUL	LTURE													
Protected cultivation	Production technology for growing off season vegetables and flowers	01	2	On	28-29 July 2022	05	02			20	3	25	5	30
Production & management technology	Scientific cultivation of medicinal & aromatic plants	01	2	On	25-26 Aug. 2022	05	02			20	3	25	5	30

Integrated Nutrient management	Role of micro nutrient in horticultural crops	01	2	On	29-30 Sept. 2022	05	02			20	3	25	5	30
Rejuvenation of old Orchard	Rejuvenation of old fruit Orchard like Mango & Litchi.	01	2	On	14-15 Oct. 2022	05	02			20	3	25	5	30
Agril. Engg	•													
Care & maintenance of farm machinery & implements	Care and maintenance of Farm Implements for efficient use	01	02	On	24-25 Aug. 2022	5	2			20	3	25	5	30
Care & maintenance of farm machinery & implements	Care and maintenance of Controlled Pressure Irrigation Devices	01	02	On	21-22 Dec.2022	5	2			20	3	25	5	30
Home Sc.	<u> </u>													
Value addition	Cultivation techniques of mushroom	1	2	On	05-06 Aug. 2022	-	10	-	00	-	15	-	25	25
House hold food security	Scientific preparation and cultivation of nutritional garden	1	2	On	2-3 Sept. 2022	-	10	-	02	-	13	-	25	25
Women & Child Care	Care of pregnant and lactating women	1	2	On	4-5 Nov. 2022	-	10	-	02	-	13	-	25	25
House hold food security	Scientific preparation and cultivation of nutritional garden	1	2	On	21-22 Nov. 2022	-	10	-	02	-	13	-	25	25

Abstract of Training: Consolidated table (ON and OFF Campus)

Farmers and Farm women

Thematic Area	No. of	No. of P	articip	ants							Gran	d Tota	l
	Course	Other	-		SC			ST					
	s	Μ	F	Т	Μ	F	Т	Μ	F	Т	Μ	F	Т
I. Crop Production													
Weed Management	01	15	0	15	10	05	15	0	0	0	25	05	30
Resource Conservation Technologies	01	15	0	15	10	05	15	0	0	0	25	05	30
Cropping Systems													
Crop Diversification													
Integrated Farming													
Water management	01	15	0	15	10	05	15	0	0	0	25	05	30
Seed production	02	30	0	30	20	10	30	0	0	0	50	10	60
Nursery management	01	15	0	15	10	05	15	0	0	0	25	05	30
Integrated Crop Management	04	60	0	60	40	20	60	0	0	0	100	20	12
													0
Fodder production	01	15	0	15	10	05	15	0	0	0	25	05	30
Production of organic inputs													
Others, (cultivation of crops)													
TOTAL													
II. Horticulture													
a) Vegetable Crops													
Integrated nutrient management	01	15	0	15	10	05	15	0	0	0	25	05	30
Water management													
Enterprise development	01	15	0	15	10	05	15	0	0	0	25	05	30
Skill development													
Yield increment	01	15	0	15	10	05	15	0	0	0	25	05	30
Production of low volume and high value													
crops													
Off-season vegetables													
Nursery raising	01	15	0	15	10	05	15	0	0	0	25	05	30
Exotic vegetables like Broccoli													
Export potential vegetables													
Grading and standardization													
Protective cultivation (Green Houses,	01	15	0	15	10	05	15	0	0	0	25	05	30
Shade Net etc.)													
Others, if any (Cultivation of Vegetable)													
TOTAL													
b) Fruits													
Training and Pruning													
Layout and Management of Orchards	01	15	0	15	10	05	15	0	0	0	25	05	30
Cultivation of Fruit													
Management of young plants/orchards													
Rejuvenation of old orchards													
Export potential fruits													
Micro irrigation systems of orchards													
Plant propagation techniques	01	15	0	15	10	05	15	0	0	0	25	05	30
Others, if any(INM)													
TOTAL													

Thematic Area	No. of	No. of P	articip	ants							Gran	d Total	
	Course	Other	-		SC			ST					
	s	Μ	F	Т	М	F	Т	Μ	F	Т	М	F	Т
c) Ornamental Plants													
Nursery Management													
Management of potted plants													
Export potential of ornamental plants													
Propagation techniques of Ornamental													
Plants													
Others, if any													
TOTAL													
d) Plantation crops													
Production and Management technology													
Processing and value addition													
Others, if any													
TOTAL													
e) Tuber crops													
Production and Management technology													
Processing and value addition													+
Others if any													
f) Spices													
Production and Management technology	01	15	0	15	10	05	15	0	0	0	25	05	30
Processing and value addition	01	15	0	15	10	05	15	0	0	0	23	05	50
Others if any													
a) Madiginal and Aromatic Diants													-
g) Medicinal and Aromatic Flants													
Production and management technology	04	60	0	60	40	20	60	0	0	0	100	20	12
Froduction and management technology	04	00	0	00	40	20	00	0	0	0	100	20	0
Post harvest technology and value													0
addition													
Others if any													
IUI Soil Health and Fartility													
Management													
Soil fertility management	01	13	0	13	10	0	10	2	0	2	25	0	25
Soil and Water Conservation	01	15	0	15	10	0	10	2	0	2	23	0	23
Integrated Nutrient Management	02	28	0	28	20	05	25	2	0	2	50	5	55
Production and use of organic inputs	02	20	0	12	10	0.5	23	2	0	2	25	5	25
Management of Problematic soils	01	15	0	15	10	0	10	2	0	2	23	0	23
Management of Problematic solis													
Nutrient Lee Efficiency													
Soil and Water Testing	01	12	0	12	10	0	10	2	0	2	25	0	25
Soli and water Testing	01	13	0	13	10	0	10	2	0	2	25	0	25
TOTAL													
IV. LIVESTOCK Production and													
Ivianagement													
Dairy Management													
Poultry Management							<u> </u>	<u> </u>		<u> </u>			<u> </u>
Piggery Management													

Thematic Area	No. of	No. of P	articipa	ants							Gran	d Total	l
	Course	Other			SC			ST					
	s	Μ	F	Т	Μ	F	Т	Μ	F	Т	Μ	F	Т
Rabbit Management													
Disease Management													
Feed management													
Production of quality animal products													
Others, if any (Goat farming)													
TOTAL													
V. Home Science/Women empowerment													
Household food security by kitchen	02	0	25	25	0	20	20	0	05	05	0	50	50
gardening and nutrition gardening													
Design and development of low/minimum													
cost diet													
Designing and development for high	01	0	15	15	0	10	10	0	0	0	0	25	25
nutrient efficiency diet													
Minimization of nutrient loss in	01	0	15	15	0	10	10	0	0	0	0	25	25
processing													
Gender mainstreaming through SHGs													
Storage loss minimization techniques	01	0	10	10	0	10	10	0	05	05	0	25	25
Enterprise development													
Value addition	02	0	30	30	0	20	20	0	0	0	0	50	50
Income generation activities for	01	0	10	10	0	10	10	0	05	05	0	25	25
empowerment of rural Women													
Location specific drudgery reduction	01	0	10	10	0	10	10	0	05	05	0	25	25
technologies													
Rural Crafts													
Capacity building													
Woman and child care	05	0	64	64	0	50	50	0	11	11	0	125	125
	0.1	0	15	15	0	30	30	0			0	25	125
Others, if any (Source of Energy)	01	0	15	15	0	10	10	0	0	0	0	25	25
TOTAL													
VI. Agril. Engineering													
Installation and maintenance of micro	04	80	12	92	20	8	28	0	0	0	100	20	12
irrigation systems													0
Use of Plastics in farming practices	02	40	06	46	10	4	14	0	0	0	50	10	60
Production of small tools and implements													
Repair and maintenance of farm	03	60	09	69	15	6	21	0	0	0	75	15	90
machinery and implements													
Resource Conservation technique	01	20	03	23	5	2	7	0	0	0	25	05	30
Application of Liquid fertilizers	01	20	03	23	5	2	7	0	0	0	25	05	30
Small scale processing and value addition													
Post Harvest Technology													
Others, if any (Use of small tolls)	01	20	03	23	5	2	7	0	0	0	25	05	30
TOTAL													
VII. Plant Protection					1								
Integrated Pest Management	06	90	0	90	60	30	90	0	0	0	150	30	18
													0

Thematic Area	No. of	No. of Pa	articipa	ints							Gran	d Total	
	Course	Other	-		SC			ST			-		
	s	M	F	Т	M	F	Т	M	F	Т	M	F	Т
Integrated Disease Management	02	30	0	30	20	10	30	0	0	0	50	10	60
Bio-control of pests and diseases	01	15	0	15	10	05	15	0	0	0	25	05	30
Production of bio control agents and bio													
pesticides													
Others, if any													
TOTAL													
VIII. Fisheries													
Integrated fish farming													
Carp breeding and hatchery management													
Carp fry and fingerling rearing													
Composite fish culture & fish disease													
Fish feed preparation & its application to													
fish pond like nursery rearing & stocking													
nond													
Hatchery management and culture of													
freshwater prawn													
Breeding and culture of ornamental fishes													
Portable plastic carp batchery													
Pen culture of fish and prawn													
Shrimp farming													
Edible ovster farming													
Pearl culture													
Fish processing and value addition													
Others if any													
IV Droduction of Inputs at site													
IX. Production of inputs at site													
Dianting material production													
Planting material production													
Bio-agents production													
Bio-pesticides production													
Bio-fertilizer production													
Vermi-compost production													
Organic manures production													
Production of fry and fingerlings													
Production of Bee-colonies and wax													
sheets													
Small tools and implements													
Production of livestock feed and fodder													
Production of Fish feed													
Others, if any													
TOTAL													
X. Capacity Building and Group													
Dynamics	ļ												
Leadership development						ļ				ļ			
Group dynamics					ļ					ļ			
Formation and Management of SHGs					ļ	L				ļ			ļ
Mobilization of social capital													
Entrepreneurial development of	03	45	0	45	30	15	45	0	0	0	75	15	90

Thematic Area	No. of	No. of P	articipa	nts							Gran	d Total	
	Course	Other			SC			ST					
	s	Μ	F	Т	Μ	F	Т	Μ	F	Т	Μ	F	Т
farmers/youths													
WTO and IPR issues													
Others, if any													
TOTAL													
XI Agro-forestry													
Production technologies													
Nursery management													
Integrated Farming Systems													
TOTAL													
XII. Others (Pl. Specify)													
TOTAL													

Rural youth

Thematic Area	No. of	No. o	f Parti	cipants							Grand	l Total	
	Courses	Othe	r		SC			ST					
		Μ	F	Т	Μ	F	Т	Μ	F	Т	Μ	F	Т
Mushroom Production	04	60	22	82	15	16	31	0	02	02	75	40	115
Bee-keeping	01	20	3	23	5	2	7	0	0	0	25	5	30
Integrated farming	01	20	03	23	5	02	7	0	0	0	25	5	30
Seed production	06	120	18	138	30	12	42	0	0	0	150	30	180
Production of organic	03	60	9	69	15	06	21	0	0	0	75	15	90
inputs													
Planting material													
production													
Vermi-culture	01	20	03	23	05	02	07	0	0	0	25	05	30
Sericulture													
Protected cultivation of													
vegetable crops													
Commercial fruit													
production													
Repair and maintenance	05	100	15	115	25	10	35	0	0	0	125	25	150
of farm machinery and													
implements													
Nursery Management of	01	0	10	10	0	10	10	0	05	05	0	25	25
Horticulture crops													
Training and pruning of													
orchards													
Value addition	01	0	15	15	0	10	10	0	0	0	0	25	25
Production of quality													
animal products													
Dairying													
Sheep and goat rearing													
Quail farming													
Piggery													
Rabbit farming													
Poultry production	01	0	15	15	0	10	10	0	0	0	0	25	25
Ornamental fisheries													

Thematic Area	No. of	No. o	of Parti	cipants							Gran	d Total	
	Courses	Othe	er		SC			ST					
		Μ	F	Т	Μ	F	Т	Μ	F	Т	М	F	Т
Para vets													
Para extension workers													
Composite fish culture													
Freshwater prawn													
culture													
Shrimp farming													
Pearl culture													
Cold water fisheries													
Fish harvest and													
processing technology													
Fry and fingerling													
rearing													
Small scale processing													
Post Harvest	02	0	26	26	0	20	20	0	04	04	0	50	50
Technology													
Tailoring and Stitching													
Rural Crafts	01	0	10	10	0	10	10	0	05	05	0	25	25
Enterprise development	02	0	30	30	0	20	20	0	0	0	0	50	50
Others if any (ICT	01	16	04	20	02	01	03	01	01	02	19	06	25
application in													
agriculture)													
TOTAL													

Extension functionaries

Thematic Area	No. of	No. o	of Parti	icipants					Grand	l Total			
	Courses	Othe	er		SC			ST					
		Μ	F	Т	Μ	F	Т	Μ	F	Т	Μ	F	Т
Productivity	01	20	03	23	5	02	07	0	0	0	25	05	30
enhancement in field													
crops													
Integrated Pest	03	60	09	69	15	06	21	0	0	0	75	15	90
Management													
Integrated Nutrient	02	40	06	46	10	04	14	0	0	0	50	10	60
management													
Rejuvenation of old	01	20	03	23	5	02	07	0	0	0	25	05	30
orchards													
Value addition	01	0	15	15	0	10	10	0	0	0	0	25	25
Protected cultivation	01	20	03	23	5	02	07	0	0	0	25	05	30
technology													
Formation and	01	20	03	23	5	02	07	0	0	0	25	05	30
Management of SHGs													
Group Dynamics and													
farmers organization													
Information networking													
among farmers													
Constitution for				-						-			
Capacity building for													
ICT application													

Care and maintenance	02	40	06	46	10	04	14	0	0	0	50	10	60
of farm machinery and													
implements													
WTO and IPR issues													
Management in farm													
animals													
Livestock feed and													
fodder production													
Household food	02	0	26	26	0	20	20	0	04	04	0	50	50
security													
Women and Child care	01	0	13	13	0	10	10	0	02	02	0	25	25
Low cost and nutrient													
efficient diet designing													
Production and use of													
organic inputs													
Gender mainstreaming													
through SHGs													
Crop intensification													
Others if any	01	20	03	23	5	02	07	0	0	0	25	05	30
(Production &													
Management													
Technology of													
Aromatic plants)													
TOTAL													

4. Frontline demonstration to be conducted*

Sl No.	Сгор	variety	Thrust Area	Thematic Area	Season:	Farming Situation:
1.	Paddy	Sabour Sampann	Promotion of HYV	ICM	Kharif	Lowland, Rainfed
2	Paddy	Sabour Surbhit	Promotion of Scented Paddy	ICM	Kharif	Up/mid land
3	Okra	Kashi Kranti	Promotion of HYV	ICM	Kharif	Medium Irrigated
4	Mushroom	Oyster	Income Generation	Mushroom Production	Rabi	Homestead
5	Mushroom	Button	Income Generation	Mushroom Production	Rabi	Homestead
6	Mushroom	Oyster	Income Generation	Value addition in Mushroom	Rabi	Homestead
7	Makhana	Sabour Makhana 1	Promotion of HYV	Varietal evaluation	Rabi	Lowland waterlogged
8	Brinjal	PH6	Water Management	Raised bed planting system with mulching	Kharif	Upland rainfed
9.	Wheat	Sabour Shrestha	Farm Mechanization	Resource Conservation Technology	Rabi	Medium lowland Irrigated
10	Lentil	HUL 57	Productivity enhancement of lentil	ICM	Rabi	Medium land
11	Bottle Gourd	PSPL	Achieving higher Irrigation Water Use Efficiency	Resource Conservation Technology	Summer	Medium irrigated
12	Nutritional Garden	Vegetables	Malnutrition	Household food security	Round the year	Homestead
13	Maize	P3522	Management of Fall Army Worm	IPM	Rabi	Upland irrigated
14	Drum Stick				Round the year	Upland irrigated

Sl.	Crop &	Propo	Technology	ParameterCost of Cultivation (Rs.)No. of farmers / demonstration(Data) inName ofDemoLocalSCSTOtherTotal												
No	variety /	sed	package for	(Data) in	Name of	Demo	Local	SC		ST		Oth	er	Tota	1	
•	Enterprises	Area (ha)/ Unit (No.)	demonstrati on	relation to technology demonstrate d	Inputs			Μ	F	Μ	F	Μ	F	Μ	F	Т
1.	Paddy Sabour Sampann	5.0	HYV	Yield Economics	Seed			2	0	0	0	8	2	10	2	12
2.	Paddy Sabour Surbhit	1.5	Scented paddy	Yield Economics	Seed							5				5
3.	Okra	1.0	ICM	Yield, Econ.	Seeds			2	2			4	2	6	4	10
4.	Button Mushroom	15 unit	Mushroom production	Yield, Econ.	Spawn			-	4	-	4	-	7	0	15	15
5.	Oyster Mushroom	20 unit	Mushroom production	Yield, Econ.	Spawn			0	10	0	05	0	5	0	20	20
6.	Value addition	20 unit	Value addition Mushroom production	Yield, Econ.	Spawn			0	10	0	05	0	5	0	20	20
7.	Makhana	2.0	ĪCM	Yield, Econ.	Seeds			1	0	0	0	3	1	4	1	5
8.	Brinjal/ HYV (Rabi 2022- 23)	02	Raised bed planting system with mulching	Yield Economics Labour Saving	Seeds & Chemicals			1	1			4	2	5	3	8
9.	Bottle Gourd Prolific Long/ Pusa Summer 2022	02	Water Management	Yield Economics WUE	Seed Chemicals			2	2			4	2	6	4	10
10.	Nutri-garden	20 unit	Balanced nutrition	Yield, Econ.	Seeds			-	8	-	4	-	8	0	10	10
11.	Pheromone trap for mango fruit fly	2.0	Use of Pheromone trap	insect pest population, yield	Pheromon e trap			03				07		10	0	10

12.	Tomato	2.0	IDM pacakage for management of tomato diseases	Yield Economics PDI	Fungicide s		03				07		10	0	10
13.	Maize	1.0	HYV	Yield Economics	Pesticides		0	0	0	0	10	0	10	0	10

Extension and Training activities under FLD:

Activity	Title of Activity	No.	Clientele	Duration	Venue				Ν	No. of Pa	rticipant	ts		
					On/Off	SC		ST		Other		Total		
						Μ	F	Μ	F	Μ	F	Μ	F	Т
Training	Scientific cultivation of Rice	01	Practicing farmers	02	On/ Off	4	2			18	6	22	08	30
Training	Hands on training for use of pheromone trap	01	Practicing farmers	01	Off	4	2			18	6	22	08	30
Monitoring	Monitoring evaluation of the demonstration	01	Practicing farmers	01	Off	03				07		10		10
Field Day	Organizing the field day for performance evaluation	01	PF,EF	01	Off	03				07		10		10
Training	Hands on training for use of Trichoderma powder	01	Practicing farmers	01	off	4	2			18	6	22	08	30
Monitoring	Monitoring evaluation of the demonstration	01	Practicing farmers	01	Off	03				07		10		10

Field Day	Organizing the field day for performance evaluation	01	PF,EF	01	Off	03				07		10		10
Training	Scientific cultivation of Okra	1	Practicing farmers	1	Off	4	2			18	6	22	08	30
Training	Production of Oyster Mushroom	1	Practicing farmers	2	On/Off	9	3	3	0	12	03	24	06	30
Training	Scientist cultivation of Makhana	1	Practicing farmers	2	On/Off	9	3	3	0	12	03	24	06	30
Training	Application of twin wheel hoe for weed management in okra	1	Practicing farmers	2	On/Off	9	3	3	0	12	03	24	06	30
Training	Rice cultivation by DSR method	1	Practicing farmers	1	Off	4	2			18	6	22	08	30
Training	Application of Zero Tillage Technique for sowing of wheat	1	Practicing farmers	1	Off	4	2			18	6	22	08	30
Training	Improved Irrigation Practices for achieving higher water use efficiency	1	Practicing farmers	1	Off	4	2			18	6	22	08	30
Field Day	DSR technology of Cultivation as labour saving method	1	PF, EF	1	Off	10	10			20	10	30	20	50
Field Day	ZTT in Wheat sowing	1	PF, EF	1	Off	10	10			20	10	30	20	50
Field Visit	Observation of crop status	01	Practicing farmers	1	Off	3	1	1	0	4	1	8	2	10

Field Day	Organizing the field day for performance evaluation	01	Practicing farmers	1	off	9	3	3	0	12	03	24	06	30
Training	Importance of nutritional garden	01	Practicing farm women	1	Off	9	3	3	0	12	03	24	06	30
Field Day	Nutritional garden	01	Practicing farm women, EF	1	off	9	3	3	0	12	03	24	06	30
Training	Production of button Mushroom	02	Practicing farmers & farm women	3	On/Off	9	3	3	0	12	03	24	06	30
Field Day	Organizing field day on application of weeding tools on Okra Cultivation	01	PF,EF	1	Off	9	3	3	0	12	03	24	06	30

* Repeat the above tables and information in Point no. 4 for EACH FLD being proposed.

Name of the	Variety /	Period	Area (ha.)	Details of Pro	duction			
Crop / Enterprise	Туре	From to		Type of Produce	Expected Production (quintals)	Cost of inputs (Rs.)	Expected Gross income (Rs.)	Expected Net Income (Rs.)
Paddy	Rajendra Sweeta/ Fine non scented	Kharif,2022	5.0	CS	25 q/ha	30000/- per ha.	100000/-	70000/-
Paddy	Sabour Shree / non scented	Kharif,2022	5.0	CS	30 q/ha	30000/- per ha.	90000/-	60000/-
Wheat	Sabour Shreshta/ Late sown	Rabi 2022-23	3.0	FS	20q/ha	20000/- per ha.	92000/-	72000/-
Lentil	HUL 57/ Bold	Rabi 2022-23	2.0	FS	15q/ha	12000/- per ha.	100000/-	88000/-
Linseed	Sabour Tisi 1/ Bold	Rabi 2022-23	2.0	CS	6.0q/ha	5000/- per ha.	9000/-	4000/-
Pea	Prakash	Rabi 2022-23	1.0	TL	12q/ha			
Guava	L 49, Allahabad Sapheda	Kharif 2022	2500 no					
Mango	Maldah, Bombay, Amrpali	Kharif 2022	5000 no					
Green Veg. Seedling	Green Veg. Seedling	Rabi/ Kharif	5000 no					

1. a) Seed and planting material production by utilization of instructional farm (Crops / Enterprises)

b) Village Seed Production Programme

Name of	Variety /	Period	Area	No. of			Details of P	roduction	
the Crop / Enterprise	Туре	From to	(ha.)	farmers	Type of Produce	Expected Production(q)	Cost of inputs (Rs.)	Expected Gross income (Rs.)	Expected Net Income (Rs.)
Paddy	Sabour Shree / medium	Kharif,2022	2.0	05	CS	30 q/ha	30000/- per ha.	105000/-	75000/-
Wheat	Sabour Shreshta/ Late sown	Rabi 2022- 21	2.0	05	CS	20q/ha	35000/- per ha.	92000/-	57000/-
Green Gram	IPM 2-14	Summer 2022	2.0	10	CS				

Extension Activities

Sl.	Activities/ Sub-activities	No. of	Farmers		Extension Officials			Total				
No		activities	Μ	F	Т	SC/ST	Male	Female	Total	Male	Female	Total
		proposed				(% of						
						total)						
1.	Field Day	05	170	30	200	10	10	02	12	180	32	212
2.	KisanMela	02	450	50	500	10	90	10	100	540	60	600
3.	Kisan Ghosthi	05	200	50	250	10	40	10	50	240	60	300
4.	Exhibition	02	200	50	250	10	40	10	50	240	60	300
5.	Film Show	05	200	50	250	10	40	10	50	240	60	300
6.	Method Demonstrations	08	45	36	81	30	16	03	19	61	39	100
7.	Farmers Seminar	03	250	50	300	20	90	10	100	340	60	400
8.	Workshop	02	50	10	60	10	07	03	10	57	13	70
9.	Group meetings	05	200	50	250	10	40	10	50	240	60	300
10.	Lectures delivered as resource	10	200	50	250	10	40	10	50	240	60	300
	persons											
11.	Advisory Services	500	400	100	500	20	90	10	100	490	110	600
12.	Scientific visit to farmers field	60	45	15	60	10	05	05	10	50	20	70
13.	Farmers visit to KVK	500	400	100	500	20	90	10	100	490	110	600
14.	Diagnostic visits	40	35	05	40	10	15	05	20	50	10	60

15.	Exposure visits	01	45	05	50	10	02	01	03	47	06	53
16.	Ex-trainees Sammelan	01	45	05	50	10	02	01	03	47	06	53
17.	Soil health Camp	01	250	50	300	10	40	10	50	290	60	350
18.	Animal Health Camp	0	0	0	0	0	0	0	0	0	0	0
19.	Agri mobile clinic	0	0	0	0	0	0	0	0	0	0	0
20.	Soil test campaigns	02	250	50	300	10	40	10	50	290	60	350
21.	Farm Science Club Conveners	01	25	05	30	10	08	02	10	33	07	40
	meet											
22.	Self Help Group Conveners	02	50	10	60	10	16	04	20	66	14	80
	meetings											
23.	Mahila Mandals Conveners meetings	02	0	100	100	20	05	15	20	05	115	120
24.	Celebration of important days	02	70	10	80	10	15	05	20	85	15	100
	(World food day, Yoga Diwas)											
25.	Sankalp Se Siddhi****	01	60	20	80	10	16	04	20	76	24	100
26.	Swatchta Hi Sewa?Pakhwara	02	200	50	250	10	40	10	50	240	60	300
27.	Mahila Kisan Diwas	01	0	100	100	20	0	10	10	0	110	110
	Total	1163	3840	1051	4891	320	797	180	977	4637	1231	5868

2. Revolving Fund (in Rs.)

Opening balance of 2021-2022 (As on 01.04.2021)	Amount proposed to be invested during 2022	Expected Return

3. Expected fund from other sources and its proposed utilization

Project	Source	Amount to be received (Rs. in lakh)

4. On-farm trials to be conducted*

OFT 1: Agronomy

Ι	Season:	2022
Ii	Title of the OFT	Productivity enhancement in Rice – Wheat cropping system
Iii	Thematic Area	Integrated Crop Management
Iv	Problem diagnosed	Farmers generally realize low productivity of Rice –Wheat cropping system due to inadequate nutrient and crop geometry management coupled with poor fertility status of soil
V	Important Cause	Use of poor yielding variety with unbalanced nutrient use and crop density management in Rice - Wheat
Vi	Production system	Rice-Wheat
Vii	Micro farming system	Light textured alluvium soil
Viii	Technology for Testing	Productivity enhancement through efficient nutrient and crop geometry management in Rice –Wheat cropping system.
Ix	Existing Practice	Use of local variety with poor nutrient and crop geometry management
X	Hypothesis	The adoption of HYV of Paddy and wheat with the concept of efficient nutrient and plant population management will result in higher yield of paddy and wheat crops
Xi	Objective(s)	To enhance the productivity of Rice –Wheat cropping system.
Xii	Treatments:	1.Farmers practice: Unbalanced nutrient and irregular plant popln 2.TO-I: 100% NPK/ha +100% Plant Density(R-W) followed by GM 3.TO-II: FYM+125% NPK/ha+ 125% Plant Density (R-W) followed by GM TO-III: FYM+150% NP K/ha+ 150% Plant Density (R-W) followed by GM Rice Fert :8 0: 40: 20 kg NPK/ha Spacing :*15 cm FYM: 10 t/ha Wheat Fert : 120:60:40 kg NPK/ha Seed rate : 20 cm
Xiii	Critical Inputs	Seed,Feretiliser,org manure soil test charge, need based plant protection chemicals, display board etc.
Xiv	Unit Size	1600 m^2
Xv	No of Replications	10
Xvi	Unit Cost	2000.00
Xvii	Total Cost	20,000.00
Xviii	Monitoring Indicator	 Technological observations : Equivalent Yield (q/ha) Yield attributing characters. Soil analysis (Soil Health status before and after) Economic indicators : Cost of cultivation Net return B:C Ratio
Xix	Source of Technology (ICAR/ AICRP/ SAU/ Other, please specify)	CSR,Modipuram

OFT2: Agronomy

Ι	Season:	Rabi 2022-23
Ii	Title of the OFT	Title: Improvement of Nitrogen use efficiency in wheat
Iii	Thematic Area	Integrated Nutrient management
Iv	Problem diagnosed	Excessive use of chemical fertilizer and Spiraling price of urea leads to increase in cost of cultivation
V	Important Cause	
Vi	Production system	Early Rice-Mustard
Vii	Micro farming system	Medium/ Upland
Viii	Technology for testing	Integrated Nutrient Management in Mustard.
Ix	Existing Practice	Use of local variety with poor nutrient management
X	Hypothesis	The adoption of HYV of Mustard with the concept of integrated nutrient management will result in good production of crop
Xi	Objective (s)	To enhance the productivity of lentil
Xii	Treatments:	 Farmer Practice: RDF (100:40:20) Kg/ha Technological Option 1: 50% of RDN & 100% PK + nano urea @4ml/lt. water (Single spray at 35 DAS). Technological Option 2: 50% of RDN & 100% PK + 2 sprays of Nano Urea at (35 DAS) and (60-65DAS) @ 4 ml/lt water.
Xiii	Critical Inputs	Seed, Fertilizers, soil test charge, need based plant protection chemicals, display board etc.
Xiv	Unit Size	10x10 m2
Xv	No of Replications	10
Xvi	Unit Cost	1500.00
Xvii	Total Cost	15,000.00
Xvii i	Monitoring Indicator Source of Technology	Technological observations : • Yield (q/ha) • Yield attributing characters. • Soil analysis (pH, EC, OC, NPK,) Economic indicators : • Cost of cultivation • Net return • B:C Ratio
XIX	(ICAR/ AICRP/ SAU/ Other, please specify)	
XX	Scientists	Dr K M Singh, Senior Scientist & Head Md.Nadeem Akhatar.SMS(PP)

OFT 3: (Plant Pathology) i. Season: Rabi 2022-22 ii. Title of the OFT Assessment of management practices for Red banded caterpillar in Mango iii. **Thematic Area** IPM **Problem diagnosed** Insect caterpillars bore in to the immature fruits nd feeds inside reaching iv. kernels. Entrance holes are plugged with excreta. Affected fruits rot and fall prematurely. Mango fruit borer insect in view of previous year severe attack in mango **Important Cause** v. orchard of Saharsa district **Production system** Mango vi. **Micro farming** Upland vii. system **Technology** for viii. Schedule spray of insecticides targeting mango fruit borer Testing **Existing Practice** Spray with chlorpyriphos @3ml/litre of water) when symptoms appear ix. **Hypothesis** IPM practices targeting right from hatching stage of insects pest to adult stage x. with different insecticide may be the possible management solution for fruit borer pest. To minimize the possible loss in view of previous year attacked by mango **Objective**(s) xi. fruit borer in Saharsa district **Treatments:** Technology option-I: Farmers Practice (FP): Spray with chlorpyriphos when xii. symptoms appear @3ml/litre of water) Technology option-II: 1. Swabbing of chlorpyriphos 50% + cypermethrin 5% EC @3 ml/lit. of water on tree trunk would kill the prepupae/ pupae population under the bark and helps in reduction of fruit damage. 2. Spraying of Profenofos 50EC @ 3 ml/lit. of water in the second fortnight of January coinciding with the moth emergence/hatching of eggs of first brood in the gardens where the pest incidence was severe in previous year.

		Technology option-III :				
		Technology option I + Spray of neem oil 1500ppm @3ml /litre of water at				
		stage of marble size fruit with again repeating at 15 days interval (2-3 spray)				
xiii.	Critical Inputs	chlorpyriphos 50% + cypermethrin 5% EC, Profenofos 50EC, neem oil				
	•	1500ppm				
xiv.	Unit Size	1000m^2				
XV.	No of Replications	07				
xvi.	Unit Cost	1500				
xvii.	Total Cost	10500				
xviii.	Monitoring	i) Average no. of damaged fruits/plant				
	Indicator	ii) Percentage disease control over farmers practice				
		iii) Total yield iv) Cost of cultivation (Rs./ha)				
		v) Gross return (Rs./ha) vi) Net return (Rs./ha)				
		vii) B: C ratio				
xix.	Source of	NCIPM, NewDelhi				
	Technology (ICAR/					
	AICRP/ SAU/					
	Other, please					
	specify)					

	(= =0108J)	
i.	Season:	Rabi 2021-22
ii.	Title of the OFT	Assessment of different fungicides for management of spot blotch disease of
		wheat in Koshi region of Bihar
iii.	Thematic Area	IDM
iv.	Problem diagnosed	
v.	Important Cause	
vi.	Production system	
vii.	Micro farming	Upland
	system	
viii.	Technology for	Efficacy of different fungicides against spot blotch pathogen
	Testing	
ix.	Existing Practice	Farmers are not aware of this pathogen
х.	Hypothesis	Spraying of effective chemical fungicides at right stage and time may manage
		the pathogen below ETL.
xi.	Objective(s)	To minimize the possible loss in view of previous year infection of spot blotch
		pathogen in Saharsa district
xii.	Treatments:	Technology option-I : Farmers Practice (FP): Spray with
		Carbendazim+Mancozeb
		Technology option-II : Seed Treatment with Vitavax 200 <u>WS@2.5g/kg</u> seed
		+Foliar Spray of Propiconazole @ 1ml/litre water first at boot leaf stage and
		second spray after 20 days of first spray
		Technology option-III : Seed Treatment with Vitavax 200 <u>WS@2.5g/kg</u> seed
		+Foliar Spray of Tebuconazole @ 1ml/litre water first at boot leaf stage and
		second spray after 20 days of first spray
xiii.	Critical Inputs	Vitavax 200 WS, Propiconazole, Tebuconazole
xiv.	Unit Size	1000m ²
XV.	No of Replications	07
xvi.	Unit Cost	1500
xvii.	Total Cost	10500
xviii.	Monitoring	i) disease severity %
	Indicator	ii) Percentage disease control over farmers practice
		111) Total yield 1v) Cost of cultivation (Rs./ha)
		v) Gross return (Rs./na) vi) Net return (Rs./na)
		VII) D. C Tatto
xix.	Source of	UBKV, West Bengal
	Technology	
	(ICAR/ AICRP/	
	SAU/ Other, please	
	specify)	

OFT: 4 (Plant Pathology)

OFT 5: (Horticulture)

i.	Season:	Rabi 2022-22	
ii.	Title of the OFT	Assessment of bio control agent for m	nanagement of Panama wilt in Banana
iii.	Thematic Area	IDM	
iv.	Problem diagnosed		
v.	Important Cause	Panama wilt in Banana	
vi.	Production system	Banana	
	Micro farming	Medium land	
VII.	system		
	Technology for		
VIII.	Testing		
ix.	Existing Practice		
х.	Hypothesis		
xi.	Objective(s)		
	Treatments:	FP: Tissue Culture plant	
xii.		TO ₁ : ICAR Fusicont	
		TO ₂ : Sabour Trichoderma	
xiii.	Critical Inputs	Paclobutrazol	
xiv.	Unit Size	1000 m2	
XV.	No of Replications	7	
xvi.	Unit Cost	Rs. 1000/Unit	
xvii.	Total Cost	Rs. 7000/-	
	Monitoring Indicator	i) Initial plant population	ii) First wilt incidence
		iii) Wilting percentage	iv) Fruit yield (t/ha)
xviii.		v) T.S.S. (⁰ B)	vi) Cost of cultivation (Rs/ha)
		Vii) Gross return (Rs/ha)	viii) Net return (Rs./ha)
		ix) B:C ratio (Rs./ha)	
	Source of Technology		
viv	(ICAR/ AICRP/		
ліл,	SAU/ Other, please		
	specify)		

OFT 6: (Horticulture)

i.	Season:	Rabi 2022-22	
ii.	Title of the OFT	Ex situ residue management of	potato
iii.	Thematic Area	Residue Management	
iv.	Problem diagnosed		
v.	Important Cause		
vi.	Production system	Vegetables- Potato	
vii.	Micro farming system	Upland	
	Technology for	FP: Sowing in ridge and furrow	v method
	Testing	TO ₁ : Sowing of potato seed with	th FYM and paddy straw 15 cm
viii.		TO ₂ : Sowing of potato seed with	ith FYM and water hyacinth
ix.	Existing Practice		
Х.	Hypothesis		
xi.	Objective (s)		
xii.	Treatments:		
xiii.	Critical Inputs		
xiv.	Unit Size	500	
XV.	No of Replications	6	
xvi.	Unit Cost	Rs. 1500/Unit	
xvii.	Total Cost	Rs. 9000	
	Monitoring Indicator	i) Plant height (cm)iii) Avg. no. of fruit/ plant	ii) Fruit yield per plant (kg)iv) Avg. Weight of fruit (g)
xviii.		V) Yield/plant (kg)	v) Yield q/ha
		vi) Cost of cultivation	vii) Gross return
		viii) Net return	ix) B: C ratio
xix.	Source of Technology (ICAR/ AICRP/ SAU/ Other, please specify)	DRPCAU, Pusa, Bihar	

i.	Season:	Kharif 2022			
ii.	Title of the OFT	Assessment of performance of different DSR implements in cultivation of			
		Kharif paddy cultivation			
iii.	Thematic Area	Application of small tools/ implements			
iv	Problem diagnosed	Transplanting method in paddy cultivation is costly affair and labour and			
1		time consuming resulted into low benefit cost ratio.			
v.	Important Cause	Un availability of labour during the peak period of transplanting			
vi.	Production system	Paddy-wheat			
***	Micro farming	Medium to upland			
VII.	system				
	Technology for	Direct seeding rice with a paddy wheat seeder in dry field condition and with			
VIII.	Testing	a paddy wheat drum seeder			
ix.	Existing Practice	Transplanting of paddy seedlings			
Х.	Hypothesis	DSR may be the best possible option for enhancing B:C ratio			
xi.	Objective (s)	To assess the performance of the two implements for DSR in Koshi region			
	Treatments:	FP: Transplanting of paddy seedlings			
		TO I: Application of DSR Technology with a paddy drum seeder in wet field			
xii.		condition			
		TO II: Application of DSR Technology with a paddy –wheat seeder in dry			
		field condition.			
xiii.	Critical Inputs	Paddy seeds			
xiv.	Unit Size	500 m^2			
XV.	No of Replications	8			
xvi.	Unit Cost	1000			
xvii.	Total Cost	8000			
xviii.	Monitoring Indicator	i. Field Capacity			
		ii. Number of effective tillers per hill			
		iii. No of grains per panicles			
		iv. 100 grain weight (g)			
		v. Yield (q/ha)			
		vi. Cost of cultivation (Rs./ha.)			
		vii. Gross Return (Rs./ha.)			
		viii. Net return (Rs./ha.)			
		ix. B:C ratio			
	Source of Technology	CRRI, Cuttack & CAE, Pusa (Bihar)			
viv	(ICAR/ AICRP/				
ліл,	SAU/ Other, please				
	specify)				

OFT 7: (Agril. Engg.)

OFT 8: (Agril. Engg.)

i.	Season:	Summer 2022			
ii.	Title of the OFT	Assessment of performance of weeding implements in cultivation of Okra			
iii.	Thematic Area	Application of small tools and implements			
iv.	Problem diagnosed	Weeding operation with a traditional spade does not control the problem of weed infestation in cultivation of Okra properly and affect the productivity of the crop			
v.	Important Cause	It is felt that frequent application of spade in very tough to apply for weed control in the okra fields.			
vi.	Production system	Green vegetables-cabbage/cauliflower-okra			
vii.	Micro farming system	Upland			
viii.	Technology for Testing	Application of a twin wheel hoe or a grubber may be the better option for weed control as it is easy to operate in the field			
ix.	Existing Practice	Use of spade for eradication of weeds			
X.	Hypothesis	Application of any push type or pull type implements may be the better option			
xi.	Objective (s)	To find out the best solution for mechanical control of weeds infestation in okra fields			
xii.	Treatments:	FP: Weed management in okra field by a spade. TOI: Weed management in okra field by application of a twin wheel hoe. TOII: Weed management in okra field by application of a grubber			
xiii.	Critical Inputs	Seeds, a twin wheel hoe and a grubber for application in the fields			
xiv.	Unit Size	200 sq. meter			
XV.	No of Replications	07			
xvi.	Unit Cost	1000			
xvii.	Total Cost	7000			
xviii.	Monitoring Indicator	i. Field capacity (m ² /hr) ii. No. of fruits per plant. iii. Fruit weight (g) iv. Yield (q/ha.). v. cost of cultivation(Rs./ha.) vi. Gross return (Rs./ha.) vii. Net return (Rs./ha.) viii. B:C ratio			
xix.	Source of Technology (ICAR/ AICRP/ SAU/ Other, please specify)	Central Institute of Agricultural Engineering Bhopal, MP			

OFT 9: Agrill. Engg. (Rabi 2022-23)

i.	Season:	Rabi 2022-23							
ii.	Title of the OFT	Assessment of Cut Off ratio in wheat irrigation							
iii.	Thematic Area	Water Management							
iv	Problem diagnosed	Excess water during irrigation affects the plant growth resulted into decrease in productivity, yield and benefit cost ratio							
v	Important Cause	Ponding of excess water during irrigation							
vi	Production system	Paddy-Wheat-Green Gram							
vii	Micro farming system	Medium to Upland							
viii	Technology for Testing	Cut off irrigation stream before reach of water at the tail end of the plot							
ix	Existing Practice	Irrigation with 100 % length							
x	Hypothesis	Cut off the irrigation stream before ponding of water at the tail end of the plot							
xi	Objective(s)	To assess the cut off length of irrigation stream with respect to yield/productivity							
	Treatments:	FP: 100 % Irrigation							
xii		TO1: Irrigation at 90% cut off							
		TO2: Irrigation at 80 % cut off							
xiii	Critical Inputs	Seeds							
xiv	Unit Size	200 sq. meter							
XV	No of Replications	07							
xvi	Unit Cost	1200							
xvii	Total Cost	8400							
xviii	Monitoring Indicator	i. No. of Irrigation. ii. Water applied (cubic metre/ha.)							
		 iii. Water Saving (cubic metre/ha.) iv. No. of effective tillers v. No. of grains per earhead vi. Sample weight (g) vii. Yield (q/ha.). viii. cost of cultivation(Rs./ha.) ix. Gross return (Rs./ha.) x. Net return (Rs./ha.) xi. B:C ratio 							
xix	Source of Technology (ICAR/ AICRP/ SAU/ Other, please specify)	DRRPCAU, Pusa							

OF 1 9										
i.	Season:	Rabi,2022								
ii.	Title of the OFT	Value Addition in Ragi and their quality evaluation								
iii.	Thematic Area	Women & child care								
iv.	Problem diagnosed									
v.	Important Cause	To overcome malnutrition								
vi.	Production system	Homestead								
vii	Micro farming	-								
VII.	system									
viii	Technology for	Value addition in Ragi								
V III.	Testing									
ix.	Existing Practice									
х.	Hypothesis									
xi.	Objective (s)									
	Treatments:	Farmers Practices: Consuming as a chapatti.								
		TO ₁ : Ragi Noodles (Refined wheat flour- 70g. Ragi- 30 g, water 30 ml,								
xii.		Salt 2g)								
		TO2: Ragi vermicelli (Refined wheat flour- 30g, Whole wheat flour-40 g								
		Ragi- 30 σ water 30 ml Salt 2 σ)								
viii	Critical Inputs	Refined wheat flour. Whole wheat flour Ragi water Salt								
viv	Unit Size	10								
XV.	No of Replications	10 10 farm families								
xvi.	Unit Cost	1000								
xvii.	Total Cost	10000/-								
xviii.	Monitoring Indicator	Technological observations								
		1 TSS(%)								
		2 Acidity(%)								
		3 Sancory Analysis								
		5. Sensory Anarysis								
		1. Taste II. Colour III. Flavour IV. Texture								
		v. Overall Acceptability								
		4. Packaging Material:								
		5. Self life (0, 15, 30, 45, 60 and 75 days at ambient refrigerated								
		condition)								
	Source of Technology	DRPCAU, Pusa Samastipur, Bihar								
	(ICAR/ AICRP/									
	SAU/ Other, please									
	specify)									

OFT 9: (Home Sc.)

OFT 10: (Home Sc.)

Ι	Season:	Rabi 2022									
	Title of the OFT	Assessment of preparation methods of Potato Flakes for more self shelf life and									
Ii		enhancement of income									
lii	Thematic Area	Value addition									
Iv	Problem diagnosed	Lack of proper knowledge regarding the Potato Flakes									
V	Important Cause	Lack of standard quality									
Vi	Production system	Homestead									
Vii	Micro farming	-									
	system										
viii	Technology for	Potato Flakes for more self shelf life and enhancement of income									
	Testing										
ix	Existing Practice	Using as a vegetable									
X	Hypothesis	It may be available throughout the year with the help of processing									
xi	Objective(s)	To use Potato Flakes for more shelf life and enhancement of income all round the									
		year									
	Treatments:	Farmers Practices: Local people consume fresh potatoes as such as									
		vegetables.									
		IO_1 : Preparation of Potato Flakes									
xii		Formulation-Ingredients(Sliced potatoes (3-5 mm) -5kg, Salt-50g, water-7.5 liter, KMS-6.0 g)									
		TO ₂ : Preparation of Potato Flakes with sour taste.									
		liter KMS-6.0 g Glacial Ascetic acid-50.0ml)									
	Critical Innuts	Sliced potatoes (3.5 mm) 5kg Salt 50g water 7.5 liter KMS 6.0 g Glacial									
xiii	Critical inputs	Ascetic acid-50 0ml									
viv	Unit Size	10									
XV	No of Replications	10 farm families									
vvi	Unit Cost	250									
	Total Cast	2500									
XVII	10tal Cost Monitoring Indicator	Z300									
XVIII	Wiomitoring mulcator	1 Compared Anglasia (Entral in a dible and in a dible									
		1. Sensory Analysis (Fried in earbie relined oil)									
		vi. Taste									
		vii. Colour									
		viii. Flavour									
		ix. Texture (Crispness)									
		x. Overall Acceptability									
		4. Packaging Material: Metalized poly ester (200 gauge)									
		5. Self life (0, 15, 30, 45, 60 and 75 days at ambient condition)									
	Source of Technology	DRPCALL Pusa Samastinur Rihar									
	(ICAR/AICRP/										
xix	SAU/ Other. nlease										
	specify)										

OFT 11: (Agril. Engg.) ATMA Head

XX.	Season:	Rabi 2022-22									
xxi.	Title of the OFT	Assessment of seeds sowing implements in cultivation of wheat									
xxii.	Thematic Area	Resource Conservation Technology									
	Problem diagnosed	Traditional method of sowing in wheat cultivation requires more critical									
xxiii.		inputs with their proper /efficient utilization resulted into low productivity									
		and benefit.									
vviv	Important Cause	Uneven placement of seeds and fertilizers(basal) during the sowing period									
ллі V .		resulted into low productivity									
XXV.	Production system	Paddy-wheat									
xxvi.	Micro farming system	Medium to upland									
xvii.	Technology for Testing	Two sowing implements: Paddy wheat seeder and a seed cum ferti. drill									
kviii.	Existing Practice	Broadcasting method of seeds placement at uneven depths									
	Hypothesis	The placement of seeds and basal fertilizers at proper depth range: 3 to 5 cm									
XXIX.		may be the best possible solution									
XXX.	Objective (s)	To assess the performance of the two sowing implements in Koshi region									
	Treatments:	FP: Seeds placement by broadcasting process after field preparation.									
xxxi.		reparation									
		preparation.									
		TO II: Seeds placement by application of a Seed cum ferti. Drill with zero till mode									
xxii.	Critical Inputs	Seeds. Herbicide, fuel for operation and transportation of implements									
xxiii.	Unit Size	500 m ² X 3									
xxiv.	No of Replications	7									
xxxv.	Unit Cost	2000									
xxvi.	Total Cost	14000									
xvii.	Monitoring Indicator	i. Field Capacity $(m^2/ha.)$									
		ii. Number of effective tillers per hill									
		iii. 100 grain weight (g)									
		iv. Yield (q/ha)									
		v. Cost of cultivation (Rs./ha.)									
		vi. Gross Return (Rs./ha.)									
		vii. Net return (Rs./ha.)									
		viii. B:C ratio									
	Source of Technology	CAE, Pusa (Bihar) & GUPA&T, Pant Nagar (Uttarakhand)									
	(ICAR/ AICRP/										
KVIII.	SAU/ Other, please										
	specify)										

*Repeat the same format for EACH OFT being proposed

10. List of Projects to be implemented by funding from other sources (other than KVK fund)

Sl. No.	Name of the project	Fund expected (Rs.)
1.	CRA Programme	
2.	Makhana Development Scheme	
3.	Quality Spawn production	

11. No. of success stories proposed to be developed with their tentative titles

12. Scientific Advisory Committee

Date of SAC meeting held during 2021	Proposed date during 2022
18.06.2021	10 June 2022

13. Soil and water testing

Details	No. of Samples	No. of Farmers							No. of Villages	No. of SHC		
	Samples	SC		ST		Other		Total			v mages	uistributeu
		Μ	F	М	F	М	F	Μ	F	Τ		
Soil Samples	1040	102	16	12	23	800	88	913	127	1040	25	1040
Water Samples												
Other (Please												
specify)												
Total												

14. Fund requirement and expenditure (Rs.)*

Heads	Expenditure (last year) (Rs.) up to 31.03.2019	Expected fund requirement (Rs.)
Total		

* Any additional requirement may be suitably justified.

15. Every KVK should bring a brief write-up supported by quality photographs about the technology having wide acceptability among the farming community of the district with factual data

1 Application of Zero tillage technology sowing for Resource Conservation

Sowing of seeds without tillage in the field is basically known as Zero Tillage Technology. Application of this technology not only reduces the cost of field preparation but also it reduces the quantity of irrigation water, the number of weed population along with environment friendly method of sowing due to less burning of fuel. As far as critical inputs like seeds and fertilizers are concerned, this method applies these inputs at proper depth and hence beneficial for better germination. This technology also supports timely sowing of Rabi crops particularly wheat specifically in late sown conditions, although this technology is also beneficial for sowing of timely sown wheat. Work on implementation of practicing Zero Tillage Technology in wheat sowing has been implemented by KVK, Saharsa since 2009 through front line demonstration programme. By introducing ZTT in wheat crop there was a saving of 45 litres per hectare diesel had been observed which resulted in reduction of cost of sowing Rs. 3500 per hectare. An average increase in the yield by 18 per cent had been observed during demonstration. BC ratio with introduction of this technology in wheat had been found as 2.57 Due to this fact nearly 10 per cent annual horizontal spread has been observed for practicing ZTT in wheat sowing within the district.

2 Application of DSR Technique in rice cultivation for reduction in cost of cultivation:

The practice of following transplanting after growing of seedlings is very common among farmers for rice cultivation. It requires huge number of labours and during the peak period of transplanting in Kharif season there is excessive expenditure on labour for the purpose has been observed. Thus it has been observed that the cost of cultivation of rice has been increased and resulted into low benefit cost ratio.

In such circumstances the practice of Direct seeding technology has been followed by the farming communities with application of a paddy drum seeder in the district. It has been observed that with the onset of early precipitation during Kharif season in the last week of May, the wet method of Direct Seeding of rice has been found easily adoptable in the locality. It has also been observed that as a paddy drum seeder is low in cost and could be easily operated by a person is very suitable for DSR practice. This technology reduces the total cost of transplanting with nearly sustainable yield of rice with 2.57 benefit ratio.

3. Rejuvenation of age old mango plants for enhancing productivity:

30 per cent of mango orchards have been found less productive due to 40 to 45 years old. The unwanted branches of these trees may be the major causes of reduction in productivity. Application of removal of these branches with proper technique and application of fungicide and recommended doses of fertilizer are found suitable option for solving this problem as it is observed that after 2 years of rejuvenation process 64 kg of fruits per plant has been picked.

4. Establishment of high density orchard of mango:

Canopy management in larger trees planted with plant geometry10 X 10 metre is a tough task resulted in less productivity particularly in mango orchard in the district. For enhancing productivity of mango orchard dwarf varieties have been established with plant geometry 2.5 X 2.5 metre for proper management of Canopy and thus by increased plant population 25 per cent increase in BC ratio has been observed in compare to traditional orchard.

5. Soil health and fertility management through green manuring

By continues application of inorganic/chemical fertilizers particularly unbalanced doses of urea during the cultivation of various crops, it has been seen the fertility of soil is decreasing. In such circumstances, the option to support the soil health through green manuring of fields is the best option as possibility of organic compost/vermicompost in huge quantity may not be fulfilled due to cattle population in the area. It is observed that green manuring through leguminous crops like Sisbanea, Green gram, Cow Pea in salty and water logging areas proves to be the best source of green manuring. It has been observed that by overturning of 50 days old Sisbanea plants increases 90 kg available nitrogen per hectare.

6. Application of Trichoderma Viridae for control of soil borne diseases in vegetables:

Vegetables seedling at transplanting stage may be attacked by many soil borne fungi viz. Fusarium, Rhizoctonia, sclerotiuns that damage up to 40-70 % through wilting & fruit rot diseases. A combination of seed treatment with Trichoderma viride @ 5g/kg of seed, soil application of 1kg Trichoderma viride per 10 quintal of vermin compost per hectare and seedling treatment with Trichoderma viride @ 10g/ litre of water have been observed the best option for controlling these diseases.

7. Application of Blue Green Algae in rice cultivation:

Application of higher/ unbalanced doses of urea by farmers in area attracts the insect population causes reduction in the productivity of rice as well as affects the soil fertility. Application of blue green algae @ 10 kg per hectare reduces the demand of nitrogen by 25 Kilogram per hectare and beneficial for saving of available nitrogen in the soil.

8. Management of agricultural waste materials for preparation of vermi compost:

Effect of chemical fertilizers on soil fertility is in question by several years. In the beginning of green revolution the productivity of crops has been increased due to application of these chemical fertilizers but during the decades after 1990 the bad effects of chemical fertilizers have been observed. In such circumstances preparation of vermi compost by special worm Eiseniafoetita and application of the compost has been observed. KVK Saharsa has introduced application of vermin compost in vegetable crops through On Farm Trials.

